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Nanoscale displacement of the image of

an atomic source of radiation
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Light emitted by an atomic source of radiation appears to travel along a straight line (ray) from the location
of the source to the observer in the far field. However, when the energy flow pattern of the radiation is
resolved with an accuracy better than an optical wavelength, it turns out that the field lines are usually
curved. We consider electric dipole radiation, a prime example of which is the radiation emitted by an
atom during an electronic transition, and we show that the field lines of energy flow are in general curves.
Near the location of the dipole, the field lines exhibit a vortex structure, and in the far field they approach
a straight line. The spatial extension of the vortex in the optical near field is of nanoscale dimension.
Due to the rotation of the field lines near the source, the asymptotic limit of a field line is not exactly
in the radially outward direction and as a consequence, the image in the far field is slightly shifted. This
sub-wavelength displacement of the image of the source should be amenable to experimental observation
with contemporary nanoscale-precision techniques.
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When light is emitted by a localized source and detected
in the far field (many wavelengths from the source), it
appears that the radiation travels along a straight line,
usually referred to as an optical ray. Such a ray is a field
line of the Poynting vector, representing the direction of
energy flow in the electromagnetic field, and therefore it
seems that the energy propagates along a straight path
from the source to the observer. Moreover, in the geo-
metrical optics limit of light propagation[1], the optical
rays in a homogeneous medium are straight, no matter
the distance to the source. Therefore the field lines of
the Poynting vector are straight, even close to the source.
In the geometrical optics limit, details of the energy flow
pattern on the scale of a wavelength are neglected. When
the exact solution of Maxwell’s equations for the radia-
tion emitted by a source is considered, the field lines of
the Poynting vector are in general curves, rather than
straight lines, and they will approach a straight line only
asymptotically when observed in the far field. For in-
stance, the radiation emitted by an electric or magnetic
dipole may exhibit a vortex structure near the location
of the dipole[2], and such vortices may also appear in
multipole radiation of any order[3]. The first predic-
tion of the existence of an optical vortex was made by
Braunbek et al.

[4]. They considered the diffraction of a
plane wave around the edge of a conducting half-plane
and found that a vortex could appear at the illuminated
side, located a fraction of a wavelength from the sheet
and near the edge. Optical vortices of this type are a
result of interference and diffraction and they can also
be found in diffraction, for instance, through a slit in a
conducting material[5,6]. The most common type of op-
tical vortices are the vortices in the field of a Laguerre-
Gaussian laser beam[7−9]. With state-of-the-art contem-
porary high-precision experimental techniques, it has be-
come feasible to detect such sub-wavelength vortices in
field line patterns of light[10,11].

A vortex in the field line pattern near the location of a
source is of a different nature. It is not due to diffraction
or interference but reflection of the angular momentum
carried away by the radiation field[2]. Also, in diffraction
or interference vortices, the field lines of the Poynting
vector swirl around a singular point of the radiation field.
At such a point, the Poynting vector itself vanishes and
the energy circulates around the singularity. When a
source is located at the center of a vortex, as in the case
we consider here, the energy emanates from the center
and rotates about an axis for numerous times before ra-
diating away to the far field. We shall consider the elec-
tromagnetic radiation emitted by an electric dipole, os-
cillating harmonically with an angular frequency ω. The
dipole moment is written as d(t) = dORe[ε exp(−iωt)],
where dO is an amplitude factor and ε is a complex-
valued vector. It can be shown[12] that in its most gen-
eral state of oscillation, the dipole moment d(t) traces
out an ellipse. When we take the plane of the ellipse as
the xy plane, we can parametrize the vector ε as

ε = −
1

√

β2 + 1
(βex + iey), (1)

with β being real, and here ex and ey are the unit vectors
along the x and y axes, respectively. For β > 0, the dipole
moment rotates counterclockwise when viewed from the
positive z axis, and for β < 0, the rotation is clockwise.
When β = ±1, the ellipse reduces to a circle, and for
β = 0, the oscillation becomes linear along the y axis.
With the known expressions[13] for the electric and mag-
netic fields of an electric dipole, the Poynting vector S(r)
can be evaluated and the result in spherical coordinates
(r, θ, φ) is

S(r) =
3PO

8πr2

[

r̂ζ(θ, φ) + eφ

2

q

(

1 +
1

q2

)

β

β2 + 1
sin θ

]

,(2)
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where we have introduced q = ωr/c as the dimensionless
distance between the field point (r, θ, φ) and the dipole.
Here c is the speed of light in vacuum and ω/c is the
wave number. In this way, a distance of 2π corresponds
to one wavelength. In Eq. (2), PO is the total emitted
power and the function

ζ(θ, φ) = 1 −
1

2
sin2 θ

[

1 +
β2 − 1

β2 + 1
cos(2φ)

]

(3)

is the dimensionless power per unit solid angle. The
Poynting vector has an r̂ and an eφ component, but no
eθ component. Therefore, along a field line the value
of θ is constant, say θO, and consequently the field line
lies on the cone θ = θO. Close to the source, the term
proportional to eφ dominates, and this gives a swirling of
the field line around the z axis. In the far field, this term
becomes small compared with the term proportional to
r̂, and therefore far away from the source the field lines
run in the radially outward direction. A typical field line
is shown in Fig. 1. It is seen that the spatial extension
of the vortex is a fraction of a wavelength.

Figure 2 shows three field lines for θO = π/2, for which
the cone reduces to the xy plane. The difference be-
tween the various field lines is that asymptotically they
run into different directions. Therefore, for a given θO,
we can specify a field line further by its final azimuthal

Fig. 1. Typical field line of the Poynting vector for the ra-
diation emitted by an electric dipole with β = 1, located at
the origin of coordinates. The field line lies on a cone (of 45◦

with the z axis for this example). Near the source, the field
line rotates numerous times around the z axis and this gives
the vortex structure in the near-field emission pattern. We
use dimensionless variables x̄ = ωx/c, etc., so that a distance
of 2π corresponds to one optical wavelength.

Fig. 2. Three field lines in the xy plane (θO = π/2) for a
circular dipole (β = 1). The field lines approach asymptoti-
cally the dashed lines, corresponding to various values of the
observation angle φO.

Fig. 3. Field lines for β = 1, φO = π. Curves a and b cor-
respond to observation angles θO = π/6 and θO = π/3, re-
spectively. Far away from the source, the field lines approach
straight lines indicated by ℓ. When viewed from the far field,
a curved field line is indistinguishable from the asymptotic
line ℓ, and this gives rise to an apparent displacement of the
source. The image point in the xy plane is the intersection
between ℓ and the xy plane, and the location of this point is
represented by the displacement vector qd.

angle φO. Conversely, when the radiation is observed
in the far field in a given direction (θO, φO), this cor-
responds uniquely to a field line of the Poynting vector
into this direction. Figure 3 shows two field lines with
φO = π for a circular dipole with β = 1. Each field line
approaches asymptotically a straight line, indicated by ℓ
in the figure, and when a field line is observed in the far
field, there appears no difference between the field line
and the asymptote ℓ. For an observer far away it there-
fore seems that the radiation comes from a point in the
xy plane, which is displaced with respect to the position
of the source. We represent this virtual displacement by
the vector qd and for the cases shown in the figure, this
vector lies along the positive y axis. The equation for the
line ℓ can be found from Eq. (2) by asymptotic expan-
sion, after which we can compute the intersection with
the xy plane. This yields

qd =
sin θO

ζ(θO, φO)

2β

β2 + 1
(ex sin φO − ey cosφO) (4)

for the displacement vector. The displacement depends
on the direction of observation (θO, φO) and parametri-
cally on the parameter β of the ellipse. For a linear dipole

Fig. 4. Field lines for θO = π/2 and φO = π/2. Curves a
and b correspond to β = 1 and β = 0.5, respectively. The
dashed lines are the asymptotes. The displacement vectors
are along the x axis, and their magnitudes are qd = 2 and
qd = 4, respectively.
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(β = 0), there is no displacement, and the field lines
run radially outward from the source to the observer.
For β 6= 0, the displacement is zero for observation along
the z axis, and its magnitude increases away from the z
axis. The magnitude of the displacement is maximum
for θO = π/2, so for observation along the xy plane,
and given θO = π/2, it is maximum for observation
along the major axis of the ellipse. For a circular dipole
(|β| = 1), the magnitude of the displacement is qd = 2
for observation in the xy plane. For |β| 6= 1, we find
from Eq. (4) that along the major axis of the ellipse the
magnitude of the displacement is 2/|β| for |β| < 1 and
2|β| for |β| > 1. Therefore, the maximum value of qd can
grow without bounds as a function of β. Figure 4 shows
the field lines for observation along the major axis for
β = 1 and β = 0.5. For |β| 6= 1, the displacement can be
large, and we see from the figure that the approach to
the asymptote ℓ becomes slow.

In conclusion, the field lines of the Poynting vector for
electric dipole radiation have a vortex structure near the
location of the source. In the far field, each field line
approaches asymptotically a straight line, reminiscent
of an optical ray. Due to the rotation near the source,
this asymptotic line does not go through the origin of
coordinates, and hence it appears for an observer in the
far field that the image is displaced in the xy plane. The
displacement is of the order of an optical wavelength, and
it depends on both the direction of observation and the
state of rotation of the dipole moment. This nanoscale
effect should be amenable to experimental observation,
and in this fashion a near field property of the radiation

could be detected in the far field.
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